Cardiac Resynchronisation Therapy Experience From Clinical Cases

Dr Nizam Domah , Dr Deva Chellen, Dr S Deenoo Victoria Hospital

Clinical Case 1

- Female 62 yrs
- 1st admission 03/06/2004 with Hx of sudden onset of Acute SOB c Palpitations.
- Dyspnea with Orthopnea ++.Gallop rhythm Bilateral Crepts +++
- PMH : DM, HTN, Hyperlipidemia Nil
- No h/o of anginal pain.
- **BP 130/80mm/hg**
 - ECG : NSR, HR 120/min
 - LBBB with large QRS complexes

• Treatment started :

Classical treamt for APO :

- loading dose diuretics ; IV nitrates ..
- Portable CXR : Gross Cardiomegaly pulmonary venous congestion

Blood investigations : Troponin NEGATIVE. Random blood sugar 6.3 mmol Urea & Electrolytes – Within normal range Free T3 T4 TSH... all normal.

• Further Investigations !

- Once patient dry.... Coronaro angio: Normal Arteries
- Most likely aetiology Idiopatic Cmyopathy. Viral ??

Discharged on D6 on ACE inhib., Diretics, Nitroglyceri Patch (to reduce pre-load), carvedilol, anti vit K..

- Re admission within 1 wk with relapse of pulm oedema ..
- Confirms that meds prescribed were regularly being taken.
- Treatment were revised and diuretics titrated up.
- Patient stayed this time for 4 days and discharged on same except higher dose of diuretics..

Since then patient has been admitted very regularly and no more responding to maximal medical treatment....

Pt still symptomatic:

NYHA III/IV orthopneic.

Mx Options in Refractory Heart Failure

DEVICE THERAPY

SURGICAL

•CRT•ICD•CRT-D (Combo Device)

Corcap

Revascuarization Mitral Valve repair/ replacement LVaDs Cardiac transplant TAH Stem Cell Therapy LV remodeling surgeries (Batista or Dor's procedure

Others : Ultrafiltration(Peritoneal Dialysis)

Background CRT

One of the most successful heart failure therapies to emerge in the last decade and is applicable to $\sim 25-30\%$ of patients with symptomatic heart failure

Restores the coordination of contraction and relaxation among the cardiac chambers, in h leads to reverse ventricular remodelling, incroved exercise tolerance, les heart failure admissions and decreased mortality

Concept of Dyssynchrony

Electrical dyssynchrony

Mechanical dyssynchrony

Dyssynchrony

- AV- delay
 - Prolonged AV interval → delayed systolic contraction of LV → impairment of early diastolic filling

S LA diastolic pressure < LV diastolic pressure→ diastolic MR

 \downarrow LV preload $\rightarrow \downarrow$ contractility

Inter- and intra-ventricular conduction delay

(ventricular dyssynchrony)

- synchrony contraction $\rightarrow \downarrow$ efficiency of contraction $\rightarrow \downarrow$
 - neordinated papillary muscle \rightarrow agravation of functional

Resynchronization

Restores AV, inter- and intra-ventricular dyssynchrony leading to:

 Improvement of LV function
 Reduction of functional MR
 LV reverse remodeling

↑ LV filling time
 ↑ LVEF
 ↓ EDV & ESV
 ↓ MR
 ↓ dyskinesia

Dyssynchrony

Electrical dyssynchrony QRS duration Intracardiac electrogram Mechanical dyssynchrony UCG MRI Nuclear medicine

Mechanical Dyssynchrony

Echocardiography

Mmode

Tissue velocity imaging:

 Velocity, time to peak velocity
 Strain, time to peak strain

 Speckle tracking

Methods of patient assessment prior to CRT implant

	Assessment	Goals
Basic requirements	ECG	QRS duration and morphology rhythm, PR interval, P-wave morphology
	Echocardiogram	Ejection fraction, LV size, MR, RV function
	Functional testing (6 min hall walk test or CPX)	Baseline objective functional status
	History and physical exam	NYHA symptom class, comorbidities, life-expectancy, risk for altered venous anatomy, suitability for procedure
	Serum chemistries	Electrolytes and renal function, coagulation tests
	Medication usage	Maximally tolerated doses for appropriate duration. Include diuretic evaluation for volume status

Additional evaluations: optional	Mechanical dyssynchrony by echo	Type and extent of dyssynchrony
	Stress echocardiography	Assess 'recruitable' myocardium
	Cardiac CT angiography	Great cardiac vein and branch mapping, CS ostium, LVEF, chamber sizes
	CMRI	Great cardiac vein and branch mapping, CS ostium, LV tissue characteristics including infarct area, LVEF
	QOL measurement	Baseline measurement for future comparison

ACC / AHA / HRS 2008 Guideline CRT for severe HF

EF <35%
QRS>120ms +LBBB
sinus rhythm
NYHA III~IV (ambulatory)
on optimal recommended medical therapy.

EF <35%
QRS>120ms
Atrial fibrillation
NYHA III~IV (ambulatory)
on optimal recommended medical therapy.

EF <35%
Ventricular pacing dependant
NYHA III~IV (ambulatory)
on optimal recommended medical therapy.

Cardiac Resynchronization Therapy in Patients With Systolic Heart Failure

CRT is indicated for patients who have left ventricular ejection fraction (LVEF) less than or equal to 35%, sinus rhythm, LBBB with a QRS duration greater than or equal to 150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT. (*Level of Evidence: A for NYHA class III/IV; Level* of Evidence: B for NYHA class II).¹

CRT can be useful for patients who have LVEF less than or equal to 35%, sinus rhythm, LBBB with a QRS duration 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT.²

lla llb lll

D

נו

A

CRT can be useful for patients who have LVEF less than or equal to 35%, sinus rhythm, a non-LBBB pattern with a QRS duration greater than or equal to 150 ms, and NYHA class III/ambulatory class IV symptoms on GDMT.²

Indication for atrioventricular junction (AVJ) ablation in patients with symptomatic permanent atrial fibrillation (AF) and optimal pharmacological therapy.

2013;eurheartj.eht150

© The European Society of Cardiology 2013. All rights reserved. For permissions please email: journals.permissions@oup.com

Overall odds ratio (95% CI) of 0.49 (0.25 - 0.93)

CARE-HF: Primary Endpoint (All-cause Mortality or HF Hosp.)

CRT. 1, Pacemaker generator;

2, right atrial pacer wire;

3, right ventricular pacer wire; And

> 4, coronary sinus ("left ventricular") pacer wire.

Back to Clinical Case 1

Female 62 yrs DM, HTN, IHD - Nil DCM with poor lvf 20% LBBB with large QRS Refractory despite guideline-directed medical therapy (GDMT) So.... She fits in..

OUTCOME POST IMPLANT

Clinical outcome post implant: Drastic improvement within 2 wks : NYHA I No orthopnea ; Progressively resume normal activities ; **Diuretics tailored off**. •ECG –Fine QRS complexes •ECHO LVEF 40-45 % **Present Meds : Carvedilol 25 mg bd ;** amipril 5 mg od.. No Admission since implantation (2009)

Pre CRT showing Wide QRS Complexes

Clinical Case 2

Male 57 yrs
Acute AWMI 1992 (Thrombolysed)
CAG 1997 : LAD Non signf lesion , Med Rx LCX & RCA Normal
19/10/2000 Admitted c VT → DC Shocked *5times
NSR , HR 73/min
VT ,Fits DC Shocked *5times

Stable on Med Rx for 5yrs 06/06/2006 VT DC Shocked150/200J *3times Cardiac Echo : Dilated LV c EF 20% Akinetic Septum

Further Management!

• RE-Coronary Angiography: Minor lesion LAD, LCX, RCA Normal

 Optimal Med Rx : Carvedilol, Aldactone, Cordarone, ASA, ATV

Still having episodes of VT

Benefited from CRT –D

No Admission since implantation

Device Monitoring

Promote[™] + 3211-36 (805217 ptE B 21) Merlin[™] PCS #12050689 3330 v12 2 1 1)

VT/VF Episode page 2 of : 29 Apr 2012, 23:4

CRT Cost Effectiveness

- Cost-effectiveness of CRT has been evaluated extensively^{1,2,3,4}
- Initial investment in implantation and ongoing device management is substantial
- However, cost effectiveness measures have been positive
 - Reduced hospitalization plus
 - Improved quality of life plus
 - Improved survival yields
 - Favorable incremental cost-effectiveness ratios (ICERS) per Quality Adjusted Life Year (QALY)

1. Fox M, et al. Health Technol Assess 2007;11(47):1-248 [Meta-analysis]

2. Calvert MJ, et al. Eur Heart J. 2005;26:2681-8. [CARE-HF sponsored by Medtronic]

3. Caro JJ et al. Curr Med Res Opin 2006; 22: 1171 - 9.

4. Feldman AM, et al. J Am Coll Cardiol 2005;46:2311-21. [COMPANION sponsored by Guidant]

Adverse Effects

- Unable to implant LV lead due to unfavourable anatomy (3-10%)
- Diaphragmatic stimulation due to proximity of phrenic nerve
- Coronary sinus dissection (0.3-4.0%)
- Coronary sinus perforation & tamponade (0.8-2.0%)
- Periprocedural death (0.4%)
- Dislodgement of LV lead (10%)
- Pneumothorax
- Complete Heart Block
- Asystole
- Pacemaker pocket infection
- External electromagnetic field

Further Study

Para Provide the second sec

- REVERSE⁷: no significance at end point
- MADIT-CRT: late 2009

Approx. 20-30% of patients with CRT are non-responders

- Is the QRS duration a good predictor of CRT response?
- Could echo evidence of ventricular dyssynchrony be more predictive?⁸
- "Dyssynhcrony study"⁹

Application in patients with AF?

Thank You

